©bongkarn thanyakij via Canva.com
Sample Size Determination for Design Validation Activities
This Webinar is over
Date | Dec 12, 2018 |
Time | 01:00 PM EDT |
Cost | $150.00 |
Online
|
Overview
Statistical Methods are typically used to ensure that product performance, quality, and reliability requirements are met during the Design Validation phase of product development. This webinar discusses common elements of sample size determination and several specific sample size applications for various design validation activities including Reliability Demonstration/Estimation, Acceptance Sampling, and Hypothesis Testing.
Design Validation should ensure that product performance, quality, and reliability requirements are met. In order to have high confidence that products will perform as intended, enough data must be collected and analyzed using various statistical methods. Selecting appropriate sample sizes often vexes many practitioners. Testing only a few units does not provide a high level of confidence that performance requirements will be consistently met. Testing too many units may be unnecessarily expensive and can lead to misleading conclusions.
This webinar discusses many issues present in any sample size determination. The webinar also discusses several common applications that require an appropriate sample size determination including Reliability Demonstration/Estimation,Estimating proportions, Acceptance Sampling for Lot Disposition, and Hypothesis Testing. Numerous examples are provided to illustrate the key concepts and applications.
Why should you Attend
Sample sizes have a significant impact on the uncertainty in estimates of key process performance characteristics. To have high confidence in results,sufficient sample sizes must be used. Potential problems should be uncovered during Design Validation, prior to launching a product. Failure to do so may result in customer dissatisfaction, excessive warranty, costly recalls,or litigation.
Participants in the webinar will be able to understand the impact of sample sizes on the results from various statistical analysis methods commonly used during Design Validation.
Areas Covered in the Session
The Target Audience includes Personnel involved in Product/Process Development and Manufacturing
Steven Wachs has 25 years of wide-ranging industry experience in both technical and management positions. He has worked as a statistician at Ford Motor Company where he has extensive experience in the development of statistical models, reliability analysis, designed experimentation, and statistical process control.
Statistical Methods are typically used to ensure that product performance, quality, and reliability requirements are met during the Design Validation phase of product development. This webinar discusses common elements of sample size determination and several specific sample size applications for various design validation activities including Reliability Demonstration/Estimation, Acceptance Sampling, and Hypothesis Testing.
Design Validation should ensure that product performance, quality, and reliability requirements are met. In order to have high confidence that products will perform as intended, enough data must be collected and analyzed using various statistical methods. Selecting appropriate sample sizes often vexes many practitioners. Testing only a few units does not provide a high level of confidence that performance requirements will be consistently met. Testing too many units may be unnecessarily expensive and can lead to misleading conclusions.
This webinar discusses many issues present in any sample size determination. The webinar also discusses several common applications that require an appropriate sample size determination including Reliability Demonstration/Estimation,Estimating proportions, Acceptance Sampling for Lot Disposition, and Hypothesis Testing. Numerous examples are provided to illustrate the key concepts and applications.
Why should you Attend
Sample sizes have a significant impact on the uncertainty in estimates of key process performance characteristics. To have high confidence in results,sufficient sample sizes must be used. Potential problems should be uncovered during Design Validation, prior to launching a product. Failure to do so may result in customer dissatisfaction, excessive warranty, costly recalls,or litigation.
Participants in the webinar will be able to understand the impact of sample sizes on the results from various statistical analysis methods commonly used during Design Validation.
Areas Covered in the Session
- Populations, Samples, Data Types,and Basic Statistics
- Common Elements of Sample Size Determination
- Design Validation Applications
- Sample Sizes for Reliability Demonstration (Pass/Fail Outcomes)
- Sample Sizes for Reliability Estimation
- Sample Sizes for Estimating Proportion Failing (Pass/Fail Test Outcomes)
- Sample Sizes for Acceptance Sampling / Lot Disposition
- Other Common Sample Size Applications (Hypothesis Testing, Equivalence Testing)
The Target Audience includes Personnel involved in Product/Process Development and Manufacturing
- Quality Personnel
- Product Design/Development Personnel
- Manufacturing Personnel
- Operations / Production Managers
- Production Supervisors
- Supplier Quality Personnel
- Quality Engineering
- Quality Assurance Managers, Engineers
- Process or Manufacturing Engineers or Managers
Steven Wachs has 25 years of wide-ranging industry experience in both technical and management positions. He has worked as a statistician at Ford Motor Company where he has extensive experience in the development of statistical models, reliability analysis, designed experimentation, and statistical process control.
Create your own event
Turn your passion into a business.
Turn your passion into a business.